Search results for "Starch-based scaffolds"

showing 2 items of 2 documents

Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering

2008

Presently the majority of tissue engineering approaches aimed at regenerating bone relies only on postimplantation vascularization. Strategies that include seeding endothelial cells (ECs) on biomaterials and promoting their adhesion, migration and functionality might be a solution for the formation of vascularized bone. Nano/micro-fiber-combined scaffolds have an innovative structure, inspired by extracellular matrix (ECM) that combines a nano-network, aimed to promote cell adhesion, with a micro-fiber mesh that provides the mechanical support. In this work we addressed the influence of this nano-network on growth pattern, morphology, inflammatory expression profile, expression of structura…

ScaffoldMaterials scienceEndothelial cellsMaterials ScienceBiophysicsNeovascularization PhysiologicNano-fibersBioengineering02 engineering and technologyStarch-based scaffoldsCell morphologyBone and BonesBone tissue engineeringBiomaterialsExtracellular matrix03 medical and health sciencesEngineeringMicroscopy Electron TransmissionTissue engineeringHumansVimentinBone regenerationCell adhesionCells Cultured030304 developmental biologyInflammation0303 health sciencesScience & TechnologyTissue EngineeringVascularizationtechnology industry and agriculture021001 nanoscience & nanotechnologyNanostructuresCell biologyPlatelet Endothelial Cell Adhesion Molecule-1Endothelial stem cellGene Expression RegulationMechanics of MaterialsNanofiberMicroscopy Electron ScanningCeramics and Composites0210 nano-technologyBiomedical engineeringBiomaterials
researchProduct

Response of micro- and macrovascular endothelial cells to starch-based fiber meshes for bone tissue engineering.

2006

The establishment of a functional vasculature is as yet an unrealized milestone in bone reconstruction therapy. For this study, fiber-mesh scaffolds obtained from a blend of starch and poly(caprolactone) (SPCL), that have previously been shown to be an excellent material for the proliferation and differentiation of bone marrow cells and thereby represent great potential as constructs for bone regeneration, were examined for endothelial cell (EC) compatibility. To be successfully applied in vivo, this tissue engineered construct should also be able to support the growth of ECs in order to facilitate vascularization and therefore assure the viability of the construct upon implantation. The ma…

ScaffoldMaterials scienceCellular differentiationEndothelial cellsBiophysicsNeovascularization PhysiologicBioengineering02 engineering and technologyComplex MixturesStarch-based scaffoldsCell junctionBone and BonesBone tissue engineeringBiomaterials03 medical and health sciencesmedicineBone regenerationCells Cultured030304 developmental biology0303 health sciencesScience & TechnologyTissue EngineeringCell adhesion moleculeVascularizationCell DifferentiationStarch021001 nanoscience & nanotechnologyCell biologyEndothelial stem cellmedicine.anatomical_structureMechanics of MaterialsCell cultureCeramics and CompositesBone marrowEndothelium Vascular0210 nano-technologyBiomedical engineeringBiomaterials
researchProduct